

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 2841-2844

Candida antarctica lipase B-catalyzed ring opening of 4-arylalkyl-substituted β-lactams

Gábor Tasnádi,^a Enikő Forró^{a,*} and Ferenc Fülöp^{a,b}

^aInstitute of Pharmaceutical Chemistry, Academy of Sciences, University of Szeged, H-6720 Szeged Eötvös utca 6, Hungary ^bResearch Group of Stereochemistry of the Hungarian, Academy of Sciences, University of Szeged, H-6720 Szeged Eötvös utca 6, Hungary

Received 30 October 2007; accepted 13 November 2007

Abstract—The Lipolase-catalyzed ring opening of racemic 4-benzyl- **3** and 4-phenylethyl-2-azetidinone **4** was performed with 0.5 equiv of H₂O in diisopropyl ether at 45 °C. The resulting (*S*)- β -amino acid **5** or **6** (ee $\ge 87\%$) and (*R*)- β -lactam **7** or **8** (ee $\ge 99\%$) enantiomers could easily be separated. The ring opening of enantiomeric β -lactams with 18% aqueous HCl afforded the corresponding enantiopure β -amino acid hydrochlorides **9** and **10** (ee $\ge 99\%$). © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, β -amino acids have aroused considerable interest as potentially biologically active compounds.¹ (S)-Homo- β -phenylalanine increases the μ -type opioid receptor affinity² and is a valuable building block for two tripeptidomimics exhibiting angiotensin-converting enzyme inhibitor activity³ and an optically active poly(β -peptide).⁴ It has been tested as a catalyst in intra- and intermolecular aldol reactions.⁵ (R)-Homo- β -phenylalanine derivatized with a thiazolidine is a potent inhibitor of dipeptidyl peptidase IV, which allows a novel therapeutic approach to the treatment of diabetes type 2.6 A photochemical application is also known.⁷ β-Phenylethyl-β-alanine has been applied as a model compound in analytical studies⁸ and its antiseizure activity has also been studied.⁹ Valuable antiplatelet¹⁰ and antiviral agents¹¹ have been synthesized from the title β-lactams.

Since their widespread investigation, over the last few years a number of new enzymatic and asymmetric syntheses of β -amino acids and β -lactams have been published most of which have been reviewed.¹² An important indirect enzymatic method for the preparation of β -amino acid enantiomers is the lipase-catalyzed asymmetric acylation of the primary hydroxy group of the N-hydroxymethylated β -lactams, or the lipase-catalyzed hydrolysis of the correspond-

ing ester derivatives, followed by ring opening to give the desired β -amino acids.¹³ We recently discovered a simple and efficient direct enzymatic method for the enantioselective (E > 200) ring cleavage of β -lactams.¹⁴ Later, the enantioselective (E > 200) ring opening of several 4-aryl-substituted β -lactams was reported.¹⁵

Herein, we report the lipase-catalyzed ring cleavage of 4-benzyl- and 4-phenylethyl-2-azetidinones (\pm) -3 and (\pm) -4.

2. Results and discussion

The starting racemic β -lactams **3** and **4** were prepared by the addition of chlorosulfonyl isocyanate to allylbenzene **1** or 4-phenyl-1-butene **2**, according to a literature method^{10,13d} (Scheme 1).

Scheme 1.

The earlier results on the lipase-catalyzed enantioselective hydrolysis of 4-aryl-substituted β -lactams¹⁵ suggested the possibility of the enantioselective ring opening of (±)-**3** and (±)-**4**. Relatively low enantioselectivity (E = 12) was

^{*} Corresponding author. Tel.: +36 62 544964; fax: +36 62 545705; e-mail: forro@pharm.u-szeged.hu

^{0957-4166/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.11.016

Scheme 2.

observed when the ring in (\pm) -4 was opened with H₂O in diisopropyl ether (DIPE), with Lipolase (30 mg/mL) as a catalyst at 60 °C (Scheme 2).

To increase the enantioselectivity, several further enzymes were tested. In addition to Lipolase (lipase B from Candida antarctica, produced by submerged fermentation of a genetically modified Aspergillus oryzae microorganism and adsorbed on a macroporous resin), Chyrazyme L-2 and Novozym 435 (both lipase B from C. antarctica) also proved to be promising catalysts, directing the hydrolysis of (±)-4 with similar enantioselectivities ($E \sim 12$). Lipase A from C. antarctica, lipase AY from Candida rugosa and Lecitase did not show any reactivity at 45 °C (no conversion after 24 h), while PPL (porcine pancreas lipase) and lipase AK from Pseudomonas fluorescens catalyzed the reaction at 45 °C, although the reaction rates and the enantioselectivities were low (after 24 h, conv. $\sim 3\%$, $E \sim 2$). Therefore Lipolase was chosen as the enzyme for further studies.

Next, we tested the ring-cleavage reactions of (\pm) -4 at different temperatures: 60, 50, 45, 40 and 30 °C. Decreasing the reaction temperature also caused the reaction rate to decrease as well, but without an increase in enantioselectivity (after 7 h, conv. = 41% at 60 °C; 24% at 50 °C; 20% at 45 °C; and 15% at 40 °C; after 5 days, conv. = 61% at 30 °C). Thus, 45 °C was chosen as the optimal temperature.

Several solvents were also tested. No reaction was observed after 24 h when the Lipolase (50 mg/mL)-catalyzed ring cleavage of (\pm) -4 was performed in chloroform, tetrahydrofuran or acetone. The reaction proceeded more slowly in toluene (conv. = 19% after 24 h) and much more slowly in 1,4-dioxane (conv. = 4% after 24 h) than in DIPE (conv. = 58% after 24 h), tert-butyl methyl ether(conv. = 60% after 24 h), diethyl ether (conv. = 49% after 10% s)24 h) or *n*-hexane (conv. = 69% after 24 h). So we chose to continue our studies in DIPE.

Certain additives can have a beneficial influence by increasing the enantioselectivity and/or the reaction rate.¹⁶ As an attempt, 1 equiv of triethylamine, 2-octanol and N,N-diisopropylethylamine were added to the reaction mixture. However, no significant changes in the reaction rate or enantioselectivity were observed (conv. $\sim 57\%$ after 24 h, $E \sim 10$).

Since the enantioselective ring cleavage of some N-Bocprotected cyclic β -lactams has been described,¹⁷ we synthesized N-Boc-protected- (\pm) -4. Unfortunately, the Lipolase (50 mg/mL)-catalyzed ring opening of N-Boc-(\pm)-4 at 45 °C did not give a better result (conv. = 94% after 24 h, E = 3).

On the basis of the preliminary results, we decided to perform the gram-scale resolutions of (\pm) -3 and (\pm) -4 in DIPE with Lipolase as catalyst and H₂O (0.5 equiv) as the nucleophile at 45 °C. We planned to stop the reactions at about 25% conversion [ee(β -amino acids) ~60%], and then perform the reactions until about 85% conversion [ee(β -lactams) ~90%], following recrystallization of the crude β amino acid and β -lactam enantiomers. The results are shown in Table 1 and in Section 4.

Table 1. Lipolase-catalyzed ring opening of (\pm) -3 and (\pm) -4

	Time (h)	Conv. at workup (%)	Enantiomer	Yield (%)	Isomer	ee ^a (%)	$[\alpha]_{\mathrm{D}}^{25}$
(±) -3	13	24	β-Amino acid 5	27	(S)	89 ^c	+7 ^{b,e}
	88	81	β-Lactam 7	36	(R)	>99 ^d	+38.8 ^{b,f}
(±)- 4	11	29	β-Amino acid 6	31	(S)	87 ^c	$+24^{b,g}$
	22	89	β-Lactam 8	30	(R)	$>99^{d}$	+19 ^{b,h}

^a After recrystallization.

^b Specific rotations were measured with a Perkin–Elmer 341 polarimeter.

^e c 0.2; H₂O lit.¹⁹ $[\alpha]_D^{25} = -8.5$ (c 0.2, H₂O) for (*R*)-5, ee = 95%. ^f c 0.65; CHCl₃ lit.^{13d} $[\alpha]_D^{25} = +30.1$ (c 0.65, CHCl₃), ee = 98%.

$${}^{g}c 0.28 \text{ lit.}^{20} [\alpha]_{D}^{25} = -28.4 (c 0.56, \text{H}_{2}\text{O}) \text{ for } (R)-6, \text{ ee} >99\%; \text{H}_{2}\text{O}.$$

^h c 0.21; CHCl₃.

^c According to HPLC [APEX Octadecyl 5 μ column (0.04 cm × 25 cm); precolumn derivatization with (S)-NIFE according to the literature;¹⁸ the mobile phases were H₂O (A) and MeCN (B), both of which contained 0.1% TFA; the gradient slopes were 95% A + 5% B at 0 min, increased to 25% A + 75% B within 60 min.; flow rate: 0.8 mL/min; room temperature; detection at 205 nm; retention times (min): 5, 38.69 (antipode: 39.67); 6, 40.00 (antipode: 40.90)].

^d According to GC [Chrompack Chirasil-L-Val column (25 m×0.25 mm); 90 °C for 20 min (3) and 10 min (4) → 140 °C; temperature rise 5 °C/min; 140 kPa; retention times (min): 7, 35.77 (antipode: 36.66); 8, 38.52 (antipode: 39.27)].

The transformations involving the ring opening of β -lactams 7 and 8 with 18% aqueous HCl afforded β -amino acid hydrochlorides 9 and 10 (Scheme 3), while treatment of amino acids 5 and 6 with 18% aqueous HCl resulted in the corresponding β -amino acid hydrochlorides 5 HCl and 6 HCl.

Scheme 3.

The absolute configurations were proven by comparing the specific rotations with the literature data^{13d,19,20} (Table 1). Thus, the absolute configuration for **5** and **6** is (*S*), and for **7** and **8** it is (*R*).

3. Conclusion

In conclusion, 4-benzyl- and 4-phenylethyl-2-azetidinones (\pm) -3 and (\pm) -4 were resolved via opening of the β -lactam ring in an organic medium. The Lipolase-catalyzed reactions when H₂O (0.5 equiv) was used as nucleophile in DIPE at 45 °C led to (*S*)- β -amino acids 5 and 6 (ee $\geq 87\%$) and (*R*)- β -lactams 7 and 8 (ee $\geq 99\%$). The products could be separated with ease. Transformations of β -lactams 7 and 8 by ring opening with 18% aqueous HCl gave the corresponding enantiomers of the β -amino acid s9 and 10 (ee $\geq 99\%$).

4. Experimental

4.1. Small-scale resolutions

In a small-scale experiment, (\pm) -4 (0.05 M solution) in DIPE (1 mL) was added to Lipolase (30 or 50 mg/mL). H₂O (0.5 equiv) was added. The mixture was shaken at 30, 40, 45, 50 or 60 °C. The progress of the reaction was followed by taking samples from the mixture at intervals and analyzing them by gas chromatography and HPLC (Table 1).

4.2. Gram-scale resolution of racemic 4-benzyl-2-azetidinone (±)-3

Racemic **3** (1.2 g, 7.44 mmol) was dissolved in DIPE (40 mL). Lipolase (1.2 g, 30 mg/mL) and H₂O (67 μL, 3.72 mmol) were added. The mixture was stirred at 45 °C for 13 h. The reaction was stopped by filtering off the enzyme at 24% conversion. The solvent was evaporated off, affording the unreacted β-lactam **7** (0.85 g, 5.27 mmol, ee = 18%). The filtered enzyme was washed with distilled H₂O (3 × 20 mL), and the H₂O was evaporated off, yielding the crystalline (*S*)-β-amino acid **5** {0.36 g, 27%; $[\alpha]_D^{25} = +7$ (*c* 0.2; H₂O); mp = 207–210 °C (recrystallized from H₂O/

acetone); ee = 89%; lit.¹⁹ $[\alpha]_D^{25} = -8.5$ (c 0.2, H₂O) for (*R*)-5; mp = 222–225 °C; ee = 95%}.

To obtain β -lactam 7 with high ee, the above unreacted lactam (0.85 g) was dissolved in DIPE (30 mL). Lipolase (0.8 g, 27 mg/mL) and H₂O (47 µL, 2.64 mmol) were added. The mixture was stirred at 45 °C for 88 h. The reaction was stopped by filtering off the enzyme at 81% conversion. The solvent was evaporated off, affording (*R*)- β -lactam 7 {0.43 g, 36%; $[\alpha]_D^{25} = +38.8$ (*c* 0.65; CHCl₃); mp = 67–69 °C (recrystallized from DIPE); ee >99%; lit.^{13d} $[\alpha]_D^{25} = +30.1$ (*c* 0.65, CHCl₃); ee = 98%}. When 5 (36 mg) was treated with 18% HCl (5 mL), 5 HCl was obtained {38 mg, 88%; $[\alpha]_D^{25} = +6$ (*c* 0.21; H₂O); mp = 172–175 °C; ee = 89%; lit.^{13d} mp = 176–178 °C}.

¹H NMR (D₂O, 400 MHz) δ (ppm) for **5**: 2.40–2.46 (dd, J = 16.8, 8.2 Hz, 1H, CH₂CO₂H), 2.52–2.57 (dd, J = 16.8, 4.9 Hz, 1H, CH₂CO₂H), 2.91–3.04 (m, 2H, CH₂Ph), 3.73–3.76 (m, 1H, CH), 7.30–7.43 (m, 5H, Ph).

¹H NMR (D₂O, 400 MHz) δ (ppm) for 5·HCl: 2.66–2.82 (m, 2H, CH₂CO), 3.03–3.05 (m, 2H, CH₂Ph), 3.90–3.93 (m, 1H, CH), 7.32–7.45 (m, 5H, Ph).

¹H NMR (CDCl₃, 400 MHz) δ (ppm) for 7: 2.68–2.72 (d, J = 14.8 Hz, 1H), 2.82–2.87 (dd, J = 13.6, 8.0 Hz, 1H), 2.95–3.00 (dd, J = 13.7, 5.7 Hz, 1H), 3.05–3.10 (m, 1H), 3.83–3.86 (m, 1H), 5.83 (br s, 1H), 7.17–7.35 (m, 5H).

4.3. Gram-scale resolution of racemic 4-phenylethyl-2-azetidinone (\pm) -4

With the procedure described above, the ring cleavage of racemic **4** (0.8 g, 4.57 mmol) in DIPE (30 mL) in the presence of Lipolase (0.8 g, 27 mg/mL) and H₂O (41 µL, 2.29 mmol) afforded (*S*)-β-amino acid **6** [0.27 g, 31%; $[\alpha]_D^{25} = +24$ (*c* 0.28; H₂O); mp = 215–219 °C (recrystallized from H₂O/acetone); ee = 87%; lit.²⁰ $[\alpha]_D^{25} = -28.4$ (*c* 0.56, H₂O) for (*R*)-**6**; mp = 215–217 °C; ee >99%] in 11 h and (*R*)-β-lactam **8** [0.24 g, 30%; $[\alpha]_D^{25} = +19$ (*c* 0.21; CHCl₃); mp = 46–48 °C (recrystallized from DIPE); ee >99%] in 22 h. When **6** (30 mg) was treated with 18% HCl (5 mL), **6**·HCl was obtained [33 mg, 92%; $[\alpha]_D^{25} = +12$ (*c* 0.21; H₂O); mp = 150–152 °C; ee = 87%].

¹H NMR (D₂O, 400 MHz) δ (ppm) for **6**: 1.96–2.02 (m, 2H), 2.45–2.52 (dd, J = 16.8, 8.4 Hz, 1H), 2.61–2.67 (dd, J = 16.8, 4.6 Hz, 1H), 2.72–2.79 (m, 2H), 3.48–3.53 (m, 1H), 7.29–7.42 (m, 5H).

¹H NMR (D₂O, 400 MHz) δ (ppm) for 6·HCl: 2.00–2.05 (m, 2H), 2.69–2.86 (m, 4H), 3.62 (m, 1H), 7.28–7.41 (m, 5H).

¹H NMR (CDCl₃, 400 MHz) δ (ppm) for **8**: 1.94–2.00 (dd, J = 14.5, 7.5 Hz, 2H, CH₂Ph), 2.55–2.59 (d, J = 14.8 Hz, 1H, CHH), 2.64–2.73 (m, 2H, CH₂), 3.02–3.08 (m, 1H, CHH), 3.61–3.65 (m, 1H, CH), 5.67 (br s, 1H, NH), 7.16–7.32 (m, 5H, Ph).

4.4. Ring opening of β-lactam enantiomers 7 and 8

Compounds **7** (50 mg) or **8** (25 mg) were refluxed in 18% HCl (10 mL) for 3 h. The solvent was evaporated off to afford **9** [60 mg, 90%; $[\alpha]_D^{25} = -8$ (*c* 0.11; H₂O); mp = 182–185 °C; ee >99%] or **10** {26 mg, 79%; $[\alpha]_D^{25} = -15$ (*c* 0.21; H₂O); mp = 146–148 °C; ee >99%}. The ¹H NMR (H₂O, 400 MHz) δ (ppm) data for **9** and **10** are similar to those for **5**·HCl and **6**·HCl.

Acknowledgements

The authors acknowledge the receipt of OTKA Grants T 046440 and T 049407, GVOP-3.1.1.-2004-05-0255/3.0 and a Bolyai Fellowship for E.F.

References

- Juaristi, E. Enantioselective synthesis of β-amino acids; Wiley-VHC: New York, 2005.
- Longobardo, L.; Melck, D.; Siciliano, R.; Santini, A.; Di Marzo, V.; Cammarota, G. *Bioorg. Med. Chem. Lett.* 2000, 10, 1185–1188.
- Pavar, M. C.; Hanif, K.; Azam, A.; Lata, S.; Qadar Pasha, M. A.; Pasha, S. *Bioorg. Med. Chem. Lett.* 2006, 16, 2117– 2121.
- Cheng, J.; Deming, T. J. Macromolecules 2001, 34, 5169– 5174.
- 5. Limbach, M. Tetrahedron Lett. 2006, 47, 3843-3847.
- Xu, J.; Ok, H. O.; Gonzalez, E. J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 4759–4762.
- Rzeska, A.; Malicka, J.; Stachowiak, K.; Szymanska, A.; Lankiewicz, L.; Wiczk, W. J. Photochem. Photobiol. A: Chem. 2001, 140, 21–26.

- (a) Hyun, M. H.; Han, S. C.; Whangbo, S. H. J. Chromatogr., A 2003, 992, 47–56; (b) Árki, A.; Tourwé, D.; Solymár, M.; Fülöp, F.; Armstrong, D. W.; Péter, A. Chromatographia 2004, 60, S43–S54.
- Tan, C. Y. K.; Wainman, D.; Weaver, D. F. Bioorg. Med. Chem. 2003, 11, 113–121.
- Zablocki, J. A.; Tjoeng, F. S.; Bovy, P. R.; Miyano, M.; Garland, R. B.; Williams, K.; Schretzman, L.; Zupec, M. E.; Rico, J. G.; Lindmark, R. J.; Toth, M. V.; McMackins, D. E.; Adams, S. P.; Panzer-Knodle, S. G.; Nicholson, N. S.; Taite, B. B.; Salyers, A. K.; King, L. W.; Campion, J. G.; Feigen, L. P. *Bioorg. Med. Chem.* **1995**, *5*, 539–551.
- Yoakim, C.; Ogilvie, W. W.; Cameron, D. R.; Chabot, C.; Guse, I.; Haché, B.; Naud, J.; O'Meara, J. A.; Plante, R.; Déziel, R. J. Med. Chem. 1998, 41, 2882–2891.
- (a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991–8035; (b) Liljeblad, A.; Kanerva, L. T. Tetrahedron 2006, 62, 5831– 5854; (c) Fülöp, F. Chem. Rev. 2001, 101, 2181–2204; (d) Fülöp, F.; Martinek, T. A.; Tóth, G. K. Chem. Soc. Rev. 2006, 35, 323–334.
- (a) Forró, E.; Árva, J.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 643–649; (b) Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 2351–2358; (c) Kámán, J.; Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2000, 11, 1593–1600; (d) Li, X.-G.; Kanerva, L. T. Adv. Synth. Catal. 2006, 348, 197– 205.
- 14. Forró, E.; Fülöp, F. Org. Lett. 2003, 5, 1209-1212.
- Forró, E.; Paál, T.; Tasnádi, G.; Fülöp, F. Adv. Synth. Catal. 2006, 348, 917–923.
- 16. Theil, F. Tetrahedron 2000, 56, 2905–2919.
- Li, H.; Argade, A.; Singh, R.; Thota, S.; Carroll, D.; Tso, K.; Taylor, V.; McLaughlin, J.; Markovstov, V. PCT Int. Appl. WO 2005/118544 A2, 2005.
- Péter, A.; Árki, A.; Vékes, E.; Tourwé, D.; Lázár, L.; Fülöp, F.; Armstrong, D. W. J. Chromatogr., A 2004, 1031, 171–178.
- Seki, M.; Matsumoto, K. Tetrahedron Lett. 1996, 37, 3165– 3168.
- Jefford, C. W.; McNulty, J.; Lu, Z.-H.; Wang, J. B. *Helv. Chim. Acta* 1996, 79, 1203–1216.